Tetrahedral Distortion in Palladium(\parallel) Macrocyclic Complexes: The Single Crystal X-Ray Structure of [Pd(tbc)](PF₆)₂·0.4MeNO₂ (tbc = 1,4,8,11-tetrabenzyl-1,4,8,11-tetra-azacyclotetradecane)

Alexander J. Blake, Robert O. Gould, Timothy I. Hyde, and Martin Schröder*

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

The single crystal X-ray structure of $[Pd(tbc)](PF_6)_2 \cdot 0.4 MeNO_2$ shows a tetrahedrally distorted square-planar stereochemistry around Pd^{II}; this distortion accounts for the anodic shift of the Pd^{II}/Pd^I redox couple for the cation.

The modification of tetra-aza macrocyclic ligands to control and tune the redox properties of co-ordinated metal centres has been the subject of much interest. Meyerstein and co-workers have shown^{1,2} that N-permethylation of $[M(cyclam)]^{2+}$ (M = Ni, Cu; cyclam = 1,4,8,11-tetra-azacyclotetradecane) leads to an overall net stabilisation of the monovalent species $[M(tmc)]^+$ (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane). The anodic shift in the Ni^{II}/Ni^I redox couple on introduction of N-alkyl groups into the macrocycle has been correlated with the greater length of the Ni-N (tertiary) bonds relative to the Ni-N (secondary) bonds in these systems.³ We wished to probe this theory further, particularly in view of the observation that increased alkylation of simple amines leads to an increase, rather than a decrease, in their basicity and donor properties.⁴ Clearly, the cyclic nature of the tetra-aza ligands is a key factor in the redox behaviour of these systems.

Previously, we have observed increased redox stabilisation of monovalent palladium centres on alkylation of a tetra-aza co-ordination sphere, *e.g.* $E_{\frac{1}{2}} = -1.53$ and -2.10 V vs. Fc/Fc⁺

(Fc = ferrocene) for $[Pd(tmc)]^{2+}$ and $[Pd(cyclam)]^{2+}$ respectively.⁵ We were interested in trying to increase the stability of Pd^I and Pd⁰ species using tetra-aza macrocyclic ligands, and have therefore undertaken a study of Pd complexes of derivatised ligands. Since Pd^{II} is much less susceptible to five and six co-ordination than Ni^{II}, Pd^{II} systems would be expected to act as a clearer indicator of the electronic and stereochemical features of four co-ordinate tetra-aza complexes. Barefield and co-workers have shown³ that benzyl functions lead to a greater anodic shift in the Ni^{II}/Ni^I couple than methyl groups. We therefore undertook a synthesis of the [Pd(tbc)]²⁺ cation.

Reaction of tbc with Pd(OAc)₂ in CH₂Cl₂ (20 °C, 24 h) gave a pale yellow solution of the [Pd(tbc)]²⁺ cation. Addition of NH₄PF₆ afforded a pale yellow precipitate which was recrystallized from MeNO₂ to give crystals of [Pd(tbc)](PF₆)₂.[†] ¹H and ¹³C N.m.r. data indicated the presence of a single symmetrical isomer in solution. Cyclic voltammetry of [Pd(tbc)](PF₆)₂ in MeCN (0.1 M Buⁿ₄NPF₆) at platinum electrodes shows a reversible reduction at $E_{\frac{1}{2}} = -1.27$ V vs. Fc/Fc⁺. Controlled potential electrolysis of [Pd(tbc)]²⁺ at a platinum gauze in MeCN at -1.45 V under a stream of Ar at 20 °C affords a highly air-sensitive, reactive species, the e.s.r. spectrum of which, at 77 K as a frozen glass, shows an anisotropic signal with axial symmetry, $g_{\parallel} = 2.320$, $g_{\perp} = 2.086$, $A_{\parallel} = 51$ G (¹⁰⁵Pd, I = 5/2). These spectral features are consistent with the formation of a d⁹ palladium(1) species [Pd(tbc)]^{+,5} Coulometric measurements confirm the reduc-

[†] Characterised by elemental analysis, ¹H and ¹³C n.m.r., u.v.visible, i.r., and fast-atom bombardment mass spectroscopy, and conductivity measurements.

Table 1. Stereochemical parameters for palladium(II) complexes of tetra-aza macrocyclic ligands.

Complex	E_{1}/Va	Site symmetry at Pd	Pd–N distances/Å	Pyramidal distortion /Å ^b	Tetrahedral distortion /Åc	Ref.
(R,S,R,S)-[Pd(tbc)] ²⁺	-1.27	C_1	2.105(8), 2.079(8) 2.098(7), 2.104(7)	0.098	-0.212(8), -0.210(7) +0.211(8), +0.211(7)	This work
(R,S,R,S)-[Pd(tmc)] ²⁺ (R,S,S,R)-[Pd(cyclam)] ²⁺	-1.53 -2.10	$C_s \\ C_s$	2.051(11), 2.066(11) 2.044(7), 2.057(7)	0.082 0.004	zero zero	5 8

a Referenced vs. Fc/Fc⁺. ^b Measured as distance of Pd out of the least-squares N_4 plane. ^c Measured as distance of each N above and below the least-squares N_4 plane.

Figure 1. Two views of the single crystal X-ray structure of $[Pd(tbc)]^{2+}$.

tion to be a one-electron process. The electron transfer at $E_{i} = -1.27$ V is therefore assigned to a Pd^{II}/Pd^I couple. This redox couple occurs at an appreciably less negative potential (by 260 mV) than for [Pd(tmc)]^{2+,5} We wished to monitor the stereochemical features of the Pd^{II} precursor in an attempt to explain this phenomenon, and undertook a single crystal X-ray structural analysis of the tbc complex.

The single crystal X-ray structure of the $[Pd(tbc)]^{2+}$ cation (Figure 1a,b) shows[‡] the Pd^{II} ion co-ordinated to the tetra-aza ligand in an approximate square plane, Pd–N(1) 2.105(8), Pd–N(4) 2.079(8), Pd–N(8) 2.098(7), Pd–N(11) 2.104(7) Å, with the Pd atom lying 0.098 Å out of the least-squares N₄ plane towards the benzyl groups. The crystal structure confirms that all four benzyl groups lie on the same side of the co-ordinated macrocycle in an R^*, S^*, R^*, S^* -configuration (*trans*-I-isomer). Interestingly, one of the phenyl rings bends back in the solid state to lie over the Pd–N(1) bond (Figure 1a); in solution, the benzyl moieties are found to be equivalent by n.m.r. spectroscopy. The most important feature of the structure is that, in addition to a pyramidal distortion, there is also a marked tetrahedral distortion at the Pd^{II} centre with N(1) and N(8) lying above, and N(4) and N(11) lying below

the least-squares N₄ plane (Table 1). The tetrahedral distortion presumably minimises steric interactions between the benzyl side-chains and with the macrocyclic backbone,6 and leads to the relatively anodic Pd^{II}/Pd^I couple. Sauvage and co-workers have shown⁷ that d⁹ Ni¹ centres are highly stabilised by imposed tetrahedral co-ordination. Minimal distortions from square planarity are observed for [Pd(cyclam)]²⁺,⁸ and this complex shows the most cathodic Pd^{II}/Pd^I couple;⁵ [Pd(tmc)]²⁺ shows a significant pyramidal distortion and a value of the Pd¹¹/Pd¹ couple intermediate between that for the cyclam and tbc complexes⁵ (Table 1). These results suggest that tetrahedral and pyramidal distortions in d⁸ metal complexes of tetra-aza macrocyclic complexes play a significant role in their reductive electrochemistry, and suggests that PdI species might be even further stabilized by imposed tetrahedral co-ordination.

We thank BP Chemicals and the S.E.R.C. for a CASE Award (to T. I. H.), the S.E.R.C. for support, and Johnson Matthey plc for generous loans of platinum metals.

Received, 14th July 1987; Com. 1018

References

- 1 N. Jubran, G. Ginzberg, H. Cohen, and D. Meyerstein, J. Chem. Soc., Chem. Commun., 1982, 517; N. Jubran, G. Ginzberg, H. Cohen, and D. Meyerstein, Inorg. Chem., 1985, 24, 251.
- 2 N. Jubran, H. Cohen, Y. Koresh, and D. Meyerstein, J. Chem. Soc., Chem. Commun., 1984, 1683.
- 3 E. K. Barefield, G. M. Freeman, and D. G. Van Derveer, *Inorg. Chem.*, 1986, **25**, 552, and references therein.
- 4 E. M. Arnett, Acc. Chem. Res., 1973, 6, 404.
- 5 A. J. Blake, R. O. Gould, T. I. Hyde, and M. Schröder, J. Chem. Soc., Chem. Commun., 1987, 431.
- 6 N. W. Alcock, K. P. Balakrishnan, P. Moore, and G. A. Pike, J. Chem. Soc., Dalton Trans., 1987, 889.
- 7 J. P. Sauvage, C. O. Dietrich-Buchecher, and J. M. Kern, J. Chem. Soc., Chem. Commun., 1985, 760.
- M. Yamashita, H. Ito, K. Toriumi, and T. Ito, *Inorg. Chem.*, 1983,
 1566; K. Toriumi, M. Yamashita, H. Ito, and T. Ito, *Acta Crystallogr.*, Sect. C., 1986, 42, 963.
- 9 SHELX76, G. M. Sheldrick, Program for Crystal Structure Refinement, University of Cambridge, 1976.

 $[\]ddagger Crystal data: C_{38}H_{48}N_4Pd^{2+}\cdot 2PF_6-0.4 CH_3NO_2$, triclinic, $P\overline{1}$, a =9.870(3), b = 14.995(5), c = 18.233(5) Å, $\alpha = 107.95(2)$, $\beta =$ 103.99(2), $\gamma = 101.50(3)^\circ$, $U = 2379 \text{ Å}^3$, $D_c = 1.370 \text{ g cm}^{-3}$, Z = 2, 6223 data measured to $\theta = 22.5^{\circ}$ using Mo- K_{α} radiation; refinement based on 5189 data with $F \ge 6\sigma$ (F). At convergence, $R_{\rm w} = 0.0822$, 0.1177 respectively for 312 parameters. The Pd position was obtained from a Patterson synthesis and the remaining non-H atoms from iterative rounds of least-squares refinement and difference Fourier synthesis.⁹ The structure exhibits disorder affecting the two PF₆⁻ ions and solvent molecules. A well-defined solvent nitromethane molecule refined to a partial occupancy of 0.407(11); a solvent molecule that defied modelling is also present, and is the most likely cause of the relatively high R values. A minor component of the cation was found to have an alternative orientation of the phenyl ring C(42)-C(47), C(42')-C(47'). Phenyl rings were refined as rigid hexagons. Hydrogen atoms were included in calculated positions and Pd, P, N, F, and O atoms were refined anisotropically.9 At convergence, the difference map showed no feature above 1.06 e Å⁻³. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.